RAZISKOVALNA NALOGA

AERODINAMIKA

Področje:
FIZIKA

Nejc Babič, Nejc Božič

Mentor: prof. Ivanka Toman

Kranj, 2003

Srednja elektro in strojna šola Kranj
Aerodinamika

Kazalo

1. Povzetek .. 3
2. Zahvala.. 4
3. Uvod.. 5
4. Aerodinamika.. 6
 4.1 Kaj je aerodinamika? .. 6
 4.2 Definicije... 6
 4.2.1 Vetrovnik ... 6
 4.2.2 Bernoullijev zakon ... 7
 4.2.2.1 Bernoullijeva enačba.. 7
 4.2.3 Upor tekočine ... 8
 4.2.3.1 Viskozni upor.. 8
 4.2.3.2 Dinamični upor ... 8
 4.2.3.3 Koeficient zračnega upora ... 9
5. Profili .. 10
 5.1 Izdelava profilov ... 10
5.2 Vrste profilov .. 10
 5.2.1 NACA 65-410 .. 10
 5.2.2 NACA 2412 ... 10
 5.2.3 NACA 0012 ... 11
 5.2.4 ASM-LRW 007.. 11
 5.2.5 HQ 2,5/9 ... 12
 5.2.6 E 193 .. 12
 5.2.7 FX 126-100 .. 12
 5.2.8 CLARK_Y ... 12
 5.2.9 AR 193-57.. 13
 5.2.10 Enostavne oblike.. 13
 5.3 Pritrditev profilov in silomera ... 14
6. Vetrovnik .. 16
 6.1 Izdelava vetrovnika ... 16
 6.1.1 Cev vetrovnika ... 17
 6.1.2 Motor vetrovnika ... 17
 6.1.3 Razširitev vetrovnika ... 18
7. Meritve.. 20
 7.1 Hitrost vetra .. 20
 7.2 Meritve sile upora ... 20
 7.3 Izračun koeficienta upora .. 21
 7.4 Opazovanje tokovnic .. 22
 7.4.1 Dim .. 22
 7.4.2 Tokovnice .. 23
8. Razprava ... 25
9. Zaključek... 26
10. Literatura.. 27
1. Povzetek

Summary

We did a wind tunnel for the research project. The wind tunnel itself was only used as a tool. The wind tunnel was made from transparent tube, from A-glass. It has a diameter of 36 centimetres. We installed an electric fan in the beginning of the tube. The fan has a diameter of 34 centimetres. A fan was used for producing laminar flow of air. We also fixed an expansion in the part of the wind tunnel where the air was flowing in. An expansion made the air to be more laminar and faster. We used a wind tunnel for measuring coefficients of air resistance of different profiles. We did all the measuring by indirectly fixing the newton-meter onto the profile. A carbon rod was used as an interface between the newton-meter and the profile. We mostly used aeroplane wing shapes for the profiles as well as some distinctive forms which can also be seen in nature. An example of this form is a drop. Beside air resistance we also observed the flow of air aroun the profiles. We did that by coloring the air.
2. Zahvala

Zahvaljujeva se mentorici prof. Ivanki Toman, ki naju je z napotki usmerjala pri raziskovanju.

Posebej se zahvaljujeva g. Karlu Kostevcu iz podjetja Akripol Trebnje. Omogočil nama je, da sva raziskovanje opravila na kvalitetnejši ravni ter z veliko manjšimi stroški.

Zahvaljujeva se tudi Roku Božiču, ki nama je pomagal pri končni izdelavi vetrovnika ter letalskih profilov.
3. Uvod

Že od vsega začetka letalstva se pojavlja problem, kako proizvesti čim več vzgona, a hkrati preprečiti velik upor. Skozi desetletja so ljudje razvijali vedno boljše priprave za merjenje teh lastnosti.

S to nalogo sva skušala priti do rezultatov, ki nama bodo povedali, kakšne so razlike glede zračnega upora med različnimi profili letalskih kril. Zavedava se, da se z doma narejenim vetrovnikom ne da konkurirati visoko-tehnološkim vetrovnikom, kot so na primer v Nasi ali pri Boeingu. Toda za raziskovanje razlik med profili je v končni fazi dovolj, če imajo vsi profili enake pogoje, ne glede na kvaliteto le-teh.

4. Aerodinamika

4.1 Kaj je aerodinamika?

Aerodinamika je veda o gibanju zraka ali drugih plinov glede na telesa, ki so v njem in o silah, ki pri tem nastajajo. Ena najpomembnejših stvari v aerodinamiki so testiranja v vetrovniku. Aerodinamika je pomembna na različnih področjih, tako na primer v industriji pri počasnih zračnih tokovih okoli stavb (industrijska aerodinamika). S poznanjem njenih zakonov se lahko zmanjša čelni upor pri avtomobilih, upošteva se pri konstruiranju ladij. S poznanjem aerodinamike lahko predvidevamo obnašanje letal in raket med letom.

Z aerodinamičnim oblikovanjem si prizadevamo doseči čim manjši upor v zračnem, vodnem ali v toku katere druge tekočine. Predmet, ki se giblje v tekočini in nima aerodinamične oblike, povzroča nastanek vrtincev, ki pomenijo za predmet dodatne ovire. Zaobljene, gladke oblike večine letal, motornih vozil in plovil zagotavljajo gladko in enakomerno oblivanje tekočine. S tem se zmanjšajo dodatne sile tekočine in poveča izkoristek, kar povzroča željeno aerodinamično reakcijo med gibanjem. Aerodinamične površine pri letalu so krila, krmilne površine, repne površine, propeler, lopatice turbine... Pri nadzvočnih hitrostih se uporablja kapljičasta oblika, ki je spredaj bolj zaščitena. Druge podobno oblikovane površine so jadra, nekatere vetnice in površine dirkalnih avtomobilov.

4.2 Definicije

4.2.1 Vetrovnik

Vetrovnik je prostor, oblikovan za usmerjanje zračnega toka, potrebnega za preučevanje letal, ladij... Gre za kanal, v katerega se namesti model, na primer letalo. To je povezano z merilnimi instrumenti, s katerimi merijo sile in hitrost. Zgodnji vetrovniki so imeli odprtni konec, z majhnim preizkuševalnim delom, skozi katerega so pospeševali zrak. Današnji vetrovniki so zaprti zaradi natančnejšega nadzora temperature, tlaka in vlage. Hitrost pretočnega zraka v vetrovnikih je različna, od nekaj km/h, do nadzvočne hitrosti 16.000 km/h.
ali več. Pri nadzvočnih hitrostih mora biti temperatura zraka izjemno visoka, da bi ponazorili letalne razmere.

4.2.2 Bernoullijev zakon

Bernoullijev zakon pravi, da hitrejši kot je zrak, nižji tlak ima le-ta. Iz tega lahko pridemo do razlage, zakaj na krilo deluje vzgon. Zrak nad krilom se namreč giblje hitreje kot zgoraj. To pomeni, da je pod krilom tlak večji kot zgoraj, to pa potiska krilo navzgor.

4.2.2.1 Bernoullijeva enačba

Ko se presek cevi, skozi katero teče tekočina, zmanjša, se hitrost tekočine poveča, tlak pa se zmanjša. V nasprotnem primeru velja, da če se presek cevi, skozi katero teče tekočina poveča, se hitrost zmanjša, tlak pa poveča. Razliko v tlaku za vodoravno tokovno cev izračunamo z Bernullijevo enačbo:

\[p + \frac{\rho \cdot v^2}{2} = \text{konst}. \]
4.2.3 Upor tekočine

Upor tekočine je sila, s katero tekočina nasprotuje gibanju teles v njej. Delimo ga na viskozni in dinamični upor.

Upor tekočine se lahko pojavi v treh primerih. V prvem primeru se pojavi, če teče tekočina in telo v njej miruje. V drugem primeru se pojavi, če tekočina miruje in se telo v njej premika. V tretjem primeru pa se pojavi, če se tekočina in telo giblja.

4.2.3.1 Viskozni upor

Viskozni upor se pojavlja v primerih, ko na oviro deluje počasna tekočina z veliko viskoznostjo. Mejna plast tekočine ob površini telesa skupaj s telesom miruje in z viskoznimi silami zadržuje sosednje plasti. Tem bolj so te sosednje plasti oddaljene od površine telesa, hitreje se gibljejo.

4.2.3.2 Dinamični upor

Ko na telo vplivajo velike hitrosti malo viskoznih tekočin, je za upor tekočine najpomembnejši dinamični upor. To je kvadratni zakon upora, ki je izrazit pri velikih hitrostih tekočine ali telesa (simetrično telo).

Enačba za dinamični upor:

\[F_u = c_u \cdot S \cdot \frac{1}{2} \cdot \rho \cdot v^2 \]

- \(F_u \) = sila dinamičnega upora
- \(c_u \) = koeficient upora
- \(S \) = največji presek
- \(\rho \) = gostota zraka (1,29 kg/m\(^3\))
- \(v \) = hitrost
4.2.3.3 Koeficient zračnega upora

Enačba za koeficient zračnega upora:

\[c_u = \frac{2 \cdot F_u}{\rho \cdot v^2 \cdot S} \]
5. Profili

Profile, ki sva jih uporabljala za meritve, bi lahko razdelili v dve skupini. V prvo skupino spadajo klasične oblike. To so preproste oblike, kot so kaplja, krog, kvadrat, polkrog. V drugo skupino pa spadajo oblike letalskih kril. To so krila, ki jih uporabljajo komercialna letala in jadralna letala.

5.1 Izdelava profilov

Osnova za profile so bili kosi stirodurja. S pomočjo računalniškega programa sva natisnila šablone, ki sva jih pritrdila na stirodur. Nato sva z vročo nitko izrezala željene oblike. Vendar pa je izrezan stirodur zelo hrapav in bi zato proizvajal dodaten upor.

5.2 Vrste profilov

5.2.1 NACA 65-410

Profil, ki se uporablja za motorna letala.
Presek profila: 32cm^2

5.2.2 NACA 2412

Profil, ki se uporablja za motorna letala.
Presek profila: 37 cm^2
5.2.3 NACA 0012

Profil, ki se uporablja za motorna letala.
Presek profila: 37 cm²

5.2.4 ASM-LRW 007

Profil, ki se uporablja na jadralnih modelih.
Presek: 29 cm²
5.2.5 HQ 2,5/9

Profil, ki se uporablja na jadralnih modelih.
Presek: 28 cm²

5.2.6 E 193

Model, ki se uporablja za jadralna letala.
Presek: 32 cm²

Slika 5.5: HQ 2.5/9
Slika 5.6: E 193

5.2.7 FX 126-100

Profil, ki se uporablja za jadralna letala.
Presek: 31 cm²

5.2.8 CLARK_Y

Profil, ki se uporablja na motornih letalih.
Presek: 36 cm²

Slika 5.7: FX 126-100
Slika 5.8: CLARK-Y
5.2.9 AR 193-57

Profil, ki se uporablja na jadralnih modelih.
Presek: 32 cm²

Slika 5.9: AR 193-57

5.2.10 Enostavne oblike

Presek kalplje: 93 cm²
Vsi ostali profili enostavnih oblik imajo presek 100 cm²

Slika 5.10: Kvader Slika 5.11: Valj
5.3 Pritrditev profilov in silomera

Profile sva pritrdila na dve jekleni palici, ki sta bili vlepljeni v 7,3 mm debelo karbonsko palico. Ta pa je bila na vetrovnik pritrjena z dvema ležajema (glej točko A, na sliki 5.14). Tako je bilo trenje zanemarljivo.

Del palice v notranjosti vetrovnika je bil dolg 8,2 cm (od točke A na sliki 5.14). Silomer sva pritrdila na del palice, ki je bil izven vetrovnika. Položaj pritrditve silomera (R₁, R₂) sva izračunala z izračunom rezultante sile, ki je delovala na profil in karbonsko palico. Da bi dobila natančnejše rezultate, sva silomer pritrdila na polovico dolžine ročice R₁, R₂. Zato je bila izmerjena sila enaka dvakratni sili upora (2Fᵤ). Rezultanto sva izračunala z naslednjimi enačbami:

Osnovna enačba:
\[\sum M^A = 0 \]
M^A = navor okrog točke A

Sile, ki delujejo na profil:
\[F_1 \cdot r_1 + F \cdot r = F'_r \cdot R \]
Iz te enačbe izrazimo ročico rezultante R:

Ročica R_1 (ročica, ki sva jo uporabila za letalske profile):

$$R_1 = \frac{\rho \cdot S_1 \cdot v^2 \cdot r_1 + \rho \cdot S \cdot v^2 \cdot r}{\rho \cdot S_1 \cdot v^2 + \rho \cdot S \cdot v^2}$$

S_1 = povprečni prečni presek letalskih profilov ($3,266 \cdot 10^{-3} \text{ m}^2$)

S = prečni presek karbonske palice ($6,068 \cdot 10^{-3} \text{ m}^2$)

$\rho = 1,29 \text{ kg/m}^3$

Ročica R_2 (ročica, ki sva jo uporabila za profile osnovnih oblik):

$$R_2 = \frac{\rho \cdot S_2 \cdot v^2 \cdot r_1 + \rho \cdot S \cdot v^2 \cdot r}{\rho \cdot S_2 \cdot v^2 + \rho \cdot S \cdot v^2}$$

S_2 = povprečni prečni presek osnovnih oblik ($9,86 \cdot 10^{-3} \text{ m}^2$)

S = prečni presek karbonske palice ($6,068 \cdot 10^{-3} \text{ m}^2$)

$\rho = 1,29 \text{ kg/m}^3$

Slika 5.14: Pritrditev profilov
6. Vetrovnik

6.1 Izdelava vetrovnika

Izdelava vetrovnika je bila potrebna, saj sva le tako lahko samostojno merila sile zračnega upora in posledično tudi koeficiente zračnega upora. Pri tem pa se je pojavilo kar nekaj problemov, saj s tem nisva imela izkušenj. Predhodno znanje, ki sva ga imela, sva pridobila iz literature in interneta.

Slika 6.1: Prerez vetrovnika

Vse enote na skicah so v mm.

Slika 6.2: Vetrovnik
6.1.1 Cev vetrovnika

Osnova vetrovnika, ki sva ga izdelala, je 1 m dolga cev, s premerom 36 cm. Ker sva hotela opazovati tudi pretok zraka preko profilov, je morala biti cev prozorna, zato sva se odločila, da uporabiva material A-glas. Ta material je dovolj močan, da se ne krivi pod svojo težo, hkrati pa je popolnoma prozoren, tako da z opazovanjem pretoka zraka nisva imela težav.

6.1.2 Motor vetrovnika

Na zadnji rob cevi sva pritrdila 3 cm široko in 3,5 mm debelo aluminijasto palico, na katero sva fiksirala motor. Ker sva delala v zaprtem prostoru, sva uporabila elektro motor. Na motor sva pritrdila dvo-krako eliso, ki je imela premer 30 cm, torej je bila na vsaki strani 3 cm ožja od same cevi. Kar precej velik problem pri elektromotorju je predstavljalo hitro segrevanje motorja med delovanjem in posledično je prišlo tudi do pregrevanja.

Slika 6.3: Prerez zadnjega dela vetrovnika Slika 6.4: Motor speed 700 BB Turbo
Tehnični podatki motorja:

<table>
<thead>
<tr>
<th>Ime:</th>
<th>Graupner Speed 700 BB Turbo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osnovna napetost:</td>
<td>9.6 V</td>
</tr>
<tr>
<td>Interval napetosti:</td>
<td>4.8-16.8 V</td>
</tr>
<tr>
<td>Obrati na minuto (rpm):</td>
<td>13,000</td>
</tr>
<tr>
<td>Osnovni el. tok:</td>
<td>2 A</td>
</tr>
<tr>
<td>Maksimalni el. tok:</td>
<td>15 A</td>
</tr>
<tr>
<td>Izkoristek:</td>
<td>75 %</td>
</tr>
<tr>
<td>Dolžina motorja:</td>
<td>67 mm</td>
</tr>
<tr>
<td>Premer motorja:</td>
<td>42,2 mm</td>
</tr>
<tr>
<td>Teža motorja:</td>
<td>350 g</td>
</tr>
</tbody>
</table>

6.1.3 Razširitev vetrovnika

Za merjenje zračnega upora ter opazovanje pretoka zraka prek profilov sva potrebovala čim bolj laminaren tok. Zato sva se odločila, da bova motor vstavila v zadnji, ne v prednji del cevi, saj s srkanjem zraka dosežemo veliko večjo laminarnost kot s pihanjem. Vendar pa je imel vsrkan veter 12 m/s manjško hitrost kot izpihan. Zato sva se odločila, da na začetek cevi vstaviva razširitev, ki bi razliko med vsrkano in izpihano hitrostjo vetra precej zmanjšala.

Razširitev sva izrezala iz grafoskopske folije debeline 0,67 mm. Ker pa je grafoskopska folija zelo prožna, se je upogibala pod svojo težo. To sva rešila z ojačitveno aluminjasto palico, ki sva jo zakrivila, tako da je imela enak premer kot sredina razširitve. Ojačitveno palico sva pritrdirila na zunanj del razširitve, tako da ni proizvajala vrtinčenja zraka, hkrati pa je prepričila upogibanje grafoskopske folije.
Slika 6.5: Prerez razširitve vetrovnika
7. Meritve

7.1 Hitrost vetra

Vse meritve sva opravila pri isti hitrosti vetra (6m/s). Hitrost vetra sva izmerila z vetromerom, kot prikazuje slika 7.2.

7.2 Meritve sile upora

Sile upora sva merila s silomerom. Položaj pritrditve silomera je opisan v poglavju 5.3. Meritve sil upora so prikazane v tabeli 7.1.

<table>
<thead>
<tr>
<th>IME; VRSTA PROFILA</th>
<th>PREČNI PRESEK $S \ (m^2)$</th>
<th>HITROST VETRA $v \ (m/s)$</th>
<th>SILA UPORA $F_u \ (N)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaplja</td>
<td>$9,3*10^{-3}$</td>
<td>6 m/s</td>
<td>0,05</td>
</tr>
<tr>
<td>Kvader</td>
<td>$1*10^{-2}$</td>
<td>6 m/s</td>
<td>0,5</td>
</tr>
<tr>
<td>Polvalj 1</td>
<td>$1*10^{-2}$</td>
<td>6 m/s</td>
<td>0,44</td>
</tr>
<tr>
<td>Valj o</td>
<td>$1*10^{-2}$</td>
<td>6 m/s</td>
<td>0,3</td>
</tr>
<tr>
<td>Polvalj 2</td>
<td>$1*10^{-2}$</td>
<td>6 m/s</td>
<td>0,2</td>
</tr>
<tr>
<td>Naca 2412</td>
<td>$3,7*10^{-3}$</td>
<td>6 m/s</td>
<td>0,005</td>
</tr>
</tbody>
</table>
Polvalj 1: polvalj, ki je z ploščatim delom obrnjen proti vetru.
Polvalj 2: polvalj, ki je z okroglim delom obrnjen proti vetru.

7.3 Izračun koeficienta upora

Koeficiente upora sva izračunala z enačbo:

\[c_u = \frac{2 \cdot F_u}{\rho \cdot v^2 \cdot S} \]

Ker sva silomer pritrdila na polovico ročice \(R_1, R_2 \), sva morala upoštevati, da je sila upora, ki sva jo izmerila, dvakrat večja od dejanske sile upora in se ujema s števcem enačbe za koeficient upora. Izračunani koeficienti upora so prikazani v tabeli 7.2.

<table>
<thead>
<tr>
<th>IME; VRSTA PROFILA</th>
<th>KOEFICIENT UPORA; (c_u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaplja (simetričen profil)</td>
<td>0,23</td>
</tr>
<tr>
<td>Kvader</td>
<td>2,15</td>
</tr>
<tr>
<td>Polvalj 1</td>
<td>0,19</td>
</tr>
<tr>
<td>Valj</td>
<td>0,13</td>
</tr>
<tr>
<td>Polvalj 2</td>
<td>0,09</td>
</tr>
<tr>
<td>Naca 2412</td>
<td>0,35</td>
</tr>
<tr>
<td>Naca 65 - 410</td>
<td>0,168</td>
</tr>
</tbody>
</table>
7.4 Opazovanje tokovnic

7.4.1 Dim

Dim sva proizvajala z dimnimi bombami (slika 7.3). Dimne bombe sva naredila iz narezanih namizno teniških žogic, ki sva jih zavila v aluminijasto folijo. Za enakomerno izhajanje dima sva vstavila silikonsko cevko.

Tabela 7.2: Izračunani koeficienti upora

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Naca 0012</td>
<td>0,174</td>
</tr>
<tr>
<td>ASM - LRW 007</td>
<td>0,37</td>
</tr>
<tr>
<td>HQ - 2,5/9</td>
<td>0,12</td>
</tr>
<tr>
<td>E 193</td>
<td>0,081</td>
</tr>
<tr>
<td>Fx 126 - 100</td>
<td>0,19</td>
</tr>
<tr>
<td>AR 193 - 57</td>
<td>0,134</td>
</tr>
<tr>
<td>CLARK - Y</td>
<td>0,18</td>
</tr>
</tbody>
</table>

Slika 7.3: Dimna bomba
7.4.2 Tokovnice

Slika 7.4: Profil polvalja 1
Slika 7.5: Profil polvalja 2
Slika 7.6: Profil kvadra
Slika 7.7: Profil kaplje
Aerodinamika

Slika 7.8: Profil krila NACA 0012

Slika 7.9: Profil valja

Slika 7.10: Profil krila HQ 2,5/9

Slika 7.11: Profil krila FX 126-100
8. Razprava

Precej natančni se nama zdijo rezultati, ki sva jih izračunala za letalska krila. To gre verjetno pripisati izredno natančno določenim oblikam, ki veljajo za letalska krila, saj razlike med najinimi letalskimi profilmi in profili, ki se uporabljajo na letalih razen v velikosti ni. V končni fazi je bila primerjava letalskih profilov tudi najin cilj, zato bi lahko rekli, da je naloga uspela.

Pri raziskovalni nalogi sva se naučila, da je z aerodinamiko povezanih še mnogo več stvari, kot samo oblivanje tekočin okoli teles. Sama naloga se nama je zdela veliko bolj obširna, kot sva to pričakovala na začetku, saj so se v vseh fazah raziskovanja pojavljali problemi, ki jih pred nalogo nisva predvidela.
9. Zaključek

Da bi vetrovnik postal še bolj uporaben, ga imava namen nadgraditi tako, da se bo v njem lahko merila tudi sila vzgona. Za to bo potrebno nameščanje še enega silomera v vertikalni smeri in pa sprememba pri pritrjevanju profilov na karbonsko palico.

Pri najinem vetrovniku sva zelo zadovoljna predvsem z laminarnim tokom zraka, ki nama ga je uspelo narediti z vsrkavanjem zraka in razširitvijo vetrovnika.
10. Literatura

- Letalska zveza Slovenije- komisija za jadrano letenje: Jadralno letalstvo. Ljubljana: ZMS, 1995, str. 70, 71

- Rudolf Kladnik: VISOKOŠOLSKA FIZIKA, 1. del. Ljubljana: Državna založba Slovenije, 1985

- http://ltp.arc.nasa.gov/aero/question/aerotheory/

- http://nix.nasa.gov

- http://nasagalaxie.larc